DEVOIR SURVEILLE 9*

Sur le calcul des variations

Soit un intervalle $I \subset \mathbb{R}$, ni vide, ni réduit à un point, et un ensemble E de fonctions $f: I \to \mathbb{R}$. On se donne une application $J: E \to \mathbb{R}$ définie au moyen d'une intégrale faisant intervenir f et ses dérivées. L'objectif de ce problème est d'étudier le minimum éventuel de J sur E:

$$\min_{f \in E} J(f)$$

et de déterminer, dans certains cas particuliers, les points f de E en lesquels J atteint son minimum. On note $E_{a,b}^k$ l'ensemble des fonctions $f:[0,1]\to\mathbb{R}$ de classe \mathscr{C}^k telles que f(0)=a et f(1)=b. La notation $g^{(k)}$ désigne la dérivée d'ordre k de la fonction g.

A. Préliminaire

1. On pose $j = \exp(2i\pi/3)$. Que vaut $j^4 + j^2 + 1$?

On note $\mathcal{M}_{n,p}(\mathbb{C})$ l'espace vectoriel des matrices à n lignes et p colonnes sur \mathbb{C} et on considère la matrice A de $\mathcal{M}_{4,4}(\mathbb{C})$ suivante :

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & -1 & 0 \end{pmatrix}$$

- 2. Proposer une matrice inversible U et une matrice diagonale D de $\mathcal{M}_{4,4}(\mathbb{C})$ telles que $U^{-1}AU = D$. La méthode choisie pour les obtenir doit être expliquée.
- 3. En déduire les solutions $X: I \to \mathcal{M}_{4,1}(\mathbb{C})$ de l'équation différentielle

$$X' = AX \tag{1}$$

4. Déterminer l'ensemble des solutions $y:I\to\mathbb{C}$ de l'équation différentielle

$$y^{(4)} + y'' + y = 0 (2)$$

et préciser parmi ces solutions celles qui sont à valeurs dans \mathbb{R} . On pourra considérer le vecteur

$$Y = \begin{pmatrix} y \\ y' \\ y'' \\ y^{(3)} \end{pmatrix}$$

B. Un lemme de du Bois-Reymond

- 5. On considère la fonction $h: \mathbb{R} \to \mathbb{R}$ définie par $h(t) = (1 t^2)^3$ si $|t| \le 1$ et h(t) = 0 sinon. Montrer que $h \in \mathscr{C}^2(\mathbb{R}, \mathbb{R})$ et représenter son graphe. La fonction h est-elle de classe \mathscr{C}^3 sur \mathbb{R} ?
- 6. Soit x_0, x_1 des nombres réels tels que $x_0 < x_1$. Construire à partir de h une fonction $g \in \mathscr{C}^2(\mathbb{R}, \mathbb{R})$ vérifiant g(x) > 0 pour tout $x \in]x_0, x_1[$ et g(x) = 0 ailleurs.
- 7. Soit $F \in \mathcal{C}^0([0,1],\mathbb{R})$ telle que $\int_0^1 F(x)u(x)dx = 0$ pour tout $u \in E_{0,0}^2$. Démontrer qu'alors F est nulle.

MPI - DS9* - 2023-2024

C. Une condition nécessaire d'Euler-Lagrange

Dans cette partie, on prend $E=E_{a,b}^2$ pour un couple donné (a,b) de nombres réels. La fonction J est définie sur E par la formule

$$J(f) = \int_0^1 \left[P(f(x)) + Q(f'(x)) \right] dx$$

où $P,Q \in \mathbb{R}[X]$ sont des polynômes fixés.

Soit $f_0 \in E$. On se propose de prouver que si $J(f_0) \leq J(f)$ pour tout $f \in E$, alors f_0 vérifie une certaine équation différentielle. Soit $u \in E_{0,0}^2$.

8. Montrer que l'application q définie sur \mathbb{R} par la formule

$$q(t) = J(f_0 + tu)$$

est polynomiale, c'est-à-dire qu'il existe une famille finie $(a_0, a_1, ..., a_r)$ de nombres réels telle que $q(t) = \sum_{k=0}^{r} a_k t^k$ pour tout $t \in \mathbb{R}$. Expliciter le coefficient a_1 sous la forme d'une intégrale faisant intervenir les polynômes dérivés P' et Q'.

9. On suppose que pour tout $f \in E, J(f_0) \leq J(f)$. Montrer qu'alors $a_1 = 0$ et en déduire l'équation différentielle :

$$\forall x \in [0, 1], \quad P'\Big(f_0(x)\Big) = \frac{\mathrm{d}}{\mathrm{d}x} \left[Q'\Big(f_0'(x)\Big)\right]$$
 (\Delta)

Exemples

Premier exemple. On choisit $E = E_{0,1}^2$ et $J = J_1$ définie par $J_1(f) = \int_0^1 (f'(x))^2 dx$.

- 10. Former l'équation différentielle (Δ) correspondante. Parmi ses solutions, préciser celles qui appartiennent à $E_{0,1}^2$.
- 11. Montrer que J_1 admet un minimum sur $E_{0,1}^2$, préciser sa valeur ainsi que les points de $E_{0,1}^2$ où ce minimum est réalisé. (On pourra s'aider de l'inégalité de Cauchy-Schwarz.)

Deuxième exemple. On choisit $E = E_{0,0}^2$ et $J = J_2$ définie par

$$J_2(f) = \int_0^1 (f'(x))^2 + (f'(x))^3 dx$$

- 12. Former l'équation différentielle (Δ) correspondante. Parmi ses solutions, montrer que seule la fonction nulle appartient à $E_{0,0}^2$.
- 13. Montrer que J_2 n'admet pas de minimum sur $E_{0,0}^2$. (On pourra se servir de la fonction u définie sur l'intervalle [0,1] par la formule $u(x)=x^2(1-x)$.)

MPI - DS9* - 2023-2024

D. Un exemple avec dérivée seconde

Dans cette partie, E désigne l'ensemble des fonctions $f \in \mathscr{C}^4(\mathbb{R}_+, \mathbb{R})$ telles que f^2 et $(f'')^2$ soient intégrables sur \mathbb{R}_+ . On rappelle que l'ensemble des fonctions $g \in \mathscr{C}^0(\mathbb{R}_+, \mathbb{R})$ telles que g^2 soit intégrable sur \mathbb{R}_+ est un \mathbb{R} -espace vectoriel, que l'on note L^2 .

3

Dans les deux questions suivantes, on considère $f \in E$.

- 14. Montrer que le produit ff'' est intégrable sur \mathbb{R}_+ et que f(x)f'(x) ne tend pas vers $+\infty$ quand $x \to +\infty$.
- 15. En déduire que $f' \in L^2$, puis que $f(x)f'(x) \to 0$ quand $x \to +\infty$.

Dans cette partie, la fonction J est définie par

$$J(f) = \int_0^{+\infty} \left[\left(f(x) \right)^2 - \left(f'(x) \right)^2 + \left(f''(x) \right)^2 \right] dx$$

Par un raisonnement identique à celui de la partie C, on peut montrer, et on l'admettra, que si la fonction J présente un minimum en un élément f de E, alors f est solution sur \mathbb{R}_+ de l'équation $(2): y^{(4)} + y'' + y = 0$.

16. Déterminer les solutions de (2) qui appartiennent à E. (On pourra d'abord étudier leur appartenance à L^2 .)

On note e_1 et e_2 les fonctions définies sur \mathbb{R}_+ par les formules

$$e_1(t) = e^{-t/2} \cos\left(t\frac{\sqrt{3}}{2}\right) \text{ et } e_2(t) = e^{-t/2} \sin\left(t\frac{\sqrt{3}}{2}\right)$$

Un calcul montre, et on l'admettra, que pour tous réels α et β ,

$$J(\alpha e_1 + \beta e_2) = \frac{\alpha^2}{4} + \frac{3\beta^2}{4} + \frac{\alpha\beta\sqrt{3}}{2}$$

On pose également, pour tout $t \in \mathbb{R}_+$,

$$\Psi(t) = e^{-t/2} \sin\left(t\frac{\sqrt{3}}{2} - \frac{\pi}{3}\right)$$

- 17. On suppose, dans cette question, que la fonction J présente un minimum en un élément f de E. Montrer que f est solution sur \mathbb{R}_+ de l'équation y'' + y' + y = 0. Montrer par ailleurs qu'il existe $\lambda \in \mathbb{R}$ tel que $f = \lambda \Psi$.
- 18. Montrer que pour tout $f \in E$ et tout réel A > 0,

$$\int_0^A \left[\left(f(x) \right)^2 - \left(f'(x) \right)^2 + \left(f''(x) \right)^2 \right] dx$$

$$= \int_0^A \left[f(x) + f'(x) + f''(x) \right]^2 dx + \left(f(0) + f'(0) \right)^2 - \left(f(A) + f'(A) \right)^2$$

Quel est le comportement de $(f(A) + f'(A))^2$ lorsque $A \to +\infty$? En déduire que la fonction J admet effectivement un minimum au point $\lambda \Psi$ pour chaque $\lambda \in \mathbb{R}$.

19. Indiquer comment le point de vue de la question précédente permet de retrouver directement toutes les fonctions $f_0 \in E$ telles que $J(f_0) = \min_{f \in E} J(f)$, sans passer par l'équation différentielle (2).

MPI - DS9* - 2023-2024

4

E. Application : une inégalité de Hardy et Littlewood

On reprend les notations de la partie précédente, et pour tout $g \in L^2$, on note

$$||g|| = \sqrt{\int_0^{+\infty} (g(x))^2} dx$$

20. Montrer que pour tout $f \in E$,

$$||f'||^2 \leqslant 2||f|| \cdot ||f''||$$

On pourra poser $f_{\mu}(x) = f(\mu x)$ et utiliser le fait que $J(f\mu) \ge 0$, pour tout réel $\mu > 0$.

21. Déterminer tous les cas d'égalité dans l'inégalité précédente.