1

DEVOIR SURVEILLE 2*

Soit $a \in \mathbb{R}$. Soit f une fonction continue sur $[a, +\infty[$. On dit que $\int_a^{+\infty} f(t)dt$ converge lorsque $\int_a^x f(t)dt$ converge vers une limite finie lorsque x tend vers $+\infty$. On note alors $\int_a^{+\infty} f(t)dt$ la limite.

Problème 1

Pour tout entier naturel n dans \mathbb{N}^* , on note $h_n = \sum_{k=1}^n \frac{1}{k}$, $f_n = h_n - \ln(n)$.

On considère les suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ définies par :

$$u_1 = 1$$
 et pour $n \ge 2$, $u_n = \frac{1}{n} + \ln(1 - \frac{1}{n})$; $v_n = \frac{1}{n} - \ln(1 + \frac{1}{n})$

- 1. Rappeler le domaine de définition de la fonction $(x \mapsto x + \ln(1-x))$. Préciser son développement limité à l'ordre 2 en 0.
- 2. Soit n un entier naturel. Quel est le signe de u_n ?
- 3. Justifier que la série $\sum_{n\geq 1} u_n$ est convergente.
- 4. Etudier la fonction $(f : x \mapsto x \ln(1+x))$ sur [0,1].
- 5. Justifier que la série $\sum_{n\geq 1} v_n$ est convergente.
- 6. Soit n un entier naturel non nul. Exprimer en fonction de n, $v_n u_n$. En déduire une expression de $\sum_{n=1}^{N} (v_n - u_n)$ en fonction de N pour tout entier naturel N supérieur ou égal à 3.
- 7. Que peut-on dire des suites $(\sum_{n=1}^{N} v_n)_{N \in \mathbb{N}^*}$ et $(\sum_{n=1}^{N} u_n)_{N \in \mathbb{N}^*}$? Justifier que $\sum_{n=1}^{+\infty} v_n = \sum_{n=1}^{+\infty} u_n$.

Dans la suite de l'exercice, on note γ la somme des séries $\sum_{n\geq 1} v_n$ et $\sum_{n\geq 1} u_n$.

- 8. Démontrer que γ est dans l'intervalle]0,1[.
- 9. Soit n un entier naturel non nul. Justifier que :

$$\ln(n+1) < h_n < 1 + \ln(n)$$

- 10. Justifier que la suite $(f_n)_{n\in\mathbb{N}^*}$ est décroissante.
- 11. Démontrer que la suite $(f_n)_{n\in\mathbb{N}^*}$ est convergente et de limite γ .

 Indication: exprimer les sommes partielles de la série $\sum_{n\geq 1} u_n$ en fonction des termes de la suite (f_n) .
- 12. Soit r un entier naturel > 1.
 - (a) Dessiner le graphe de la fonction $(x \mapsto 1/x^r)$ sur \mathbb{R}^{+*} .
 - (b) Soit a un nombre réel > 0. Montrer que $\int_a^{+\infty} \frac{1}{t^r} dt$ converge et exprimer $I(a) = \int_a^{+\infty} \frac{1}{t^r} dt$, en fonction de a et r.
 - (c) Montrer que $\frac{1}{n^r} \underset{n \to +\infty}{\sim} \int_n^{n+1} \frac{dt}{t^r}$.

MPI - DS2 - 2023-2024*

2

(d) En déduire

$$\sum_{k=n}^{+\infty} \frac{1}{k^r} \underset{n \to +\infty}{\sim} \frac{1}{(r-1)n^{r-1}}.$$

(e) Soit (w_n) une suite de nombres réels qui converge vers 0.

On suppose que la suite $(n^r(w_{n+1}-w_n))_{n\in\mathbb{N}}$ est convergente vers une limite ℓ telle que $\ell>0$.

En considérant le reste de rang n-1 de $\sum (w_{k+1}-w_k)$ (après avoir justifié son existence), démontrer que la suite $(n^{r-1}w_n)_{n\in\mathbb{N}}$ est convergente et expliciter en fonction de ℓ et r sa limite.

- (f) Ce résultat reste-t-il vrai si la limite ℓ de la suite $(n^r(w_{n+1}-w_n))_{n\in\mathbb{N}}$ est 0 ?
- 13. Démontrer qu'il existe un nombre réel α que l'on explicitera tel que :

$$\forall n \in \mathbb{N}^*, \ \sum_{k=1}^n \frac{1}{k} = \ln(n) + \gamma + \frac{\alpha}{n} + o(\frac{1}{n})$$

Indication : on appliquera les résultats de la question 12 à une suite bien choisie.

Problème 2

On note $\lfloor x \rfloor$ la partie entière d'un réel x. On rappelle qu'un nombre entier naturel, au moins égal à 2, est dit premier s'il n'est divisible que par 1 et lui même (donc 1 n'est pas premier).

On note $\mathcal{P} = \{2, 3, 5, 7, 11, \dots\}$ l'ensemble des nombres premiers. On rappelle aussi que tout entier naturel n, au moins égal à 2, se décompose, de façon unique à l'ordre des facteurs près, comme produit de nombres premiers c'est-à-dire qu'il existe $r \in \mathbb{N}^*$, $(p_1, \dots, p_r) \in \mathcal{P}^r$ et $(\alpha_1, \dots, \alpha_r) \in (\mathbb{N}^*)^r$ tels que

$$n = \prod_{k=1}^{r} p_k^{\alpha_k}$$

Si a et b sont deux entiers naturels tels que $a \leq b$, la notation $\sum_{\substack{a \leq p \leq b \\ p \in \mathcal{P}}} \alpha_p$ désigne la somme des nombres α_p pour tous les entiers **premiers** p de l'intervalle entier $[\![a,b]\!]$. On définit de la même façon

 $\sum_{\substack{p \le b \\ \geq 0}} \alpha_p, \prod_{\substack{a \le p \le b \\ \geq 0}} \alpha_p \text{ etc.}$

Par exemple,
$$\sum_{\substack{4 \le p \le 10 \\ p \in \mathcal{P}}} \alpha_p = \alpha_5 + \alpha_7$$
 ou $\prod_{\substack{p \le 8 \\ p \in \mathcal{P}}} \alpha_p = \alpha_2 \times \alpha_3 \times \alpha_5 \times \alpha_7$.

Partie I. Préliminaires

On établit, dans cette partie, quelques résultats préliminaires, indépendants les uns des autres, qui seront utilisés par la suite.

- 1. Soit $n_0 \in \mathbb{N}^*$ et f une fonction continue, décroissante et positive de $[n_0, +\infty[$ dans \mathbb{R} . On pose, pour tout entier naturel n non nul, $S_n = \sum_{k=n_0}^n f(k)$.
 - (a) Montrer que la suite $(\gamma_n)_{n\geq n_0}$ de terme général $\gamma_n=S_n-\int_{n_0}^n f(t)\ dt$ est monotone et convergente.

(b) En déduire l'existence d'un réel, noté C, pour lequel on a, lorsque l'entier n tend vers $+\infty$

$$\sum_{k=2}^{n} \frac{1}{k \ln(k)} = \ln(\ln(n)) + C + o(1)$$

3

- (c) Etablir la convergence de l'intégrale $\int_2^{+\infty} \frac{1}{t \ln^2(t)} dt$ et en déduire la convergence de la série $\sum \frac{1}{k \ln^2(k)}$.
- 2. Montrer que la série de terme général $\frac{\ln(k)}{k(k-1)}$ est convergente.

On note
$$K = \sum_{k=2}^{+\infty} \frac{\ln(k)}{k(k-1)}$$
 sa somme.

MPI - DS2* - 2023-2024

3. (a) Prouver, pour tout entier naturel n au moins égal à 2, l'inégalité :

$$\sum_{k=2}^{n} \ln(k) \ge n \ln(n) - n + 1$$

- (b) En déduire, quand n tend vers $+\infty$, l'estimation : $\ln(n!) = n \ln(n) + O(n)$.
- 4. (a) Soit λ un réel strictement positif. Justifier, pour tout $n \in \mathbb{N}^*$, l'existence et l'unicité d'un réel x > 0 tel que $x \ln(x) \lambda x = \ln(n)$. On note r_n cet unique réel.
 - (b) Montrer que $\lim_{n\to+\infty} r_n = +\infty$ puis établir l'équivalence $r_n \sim \frac{\ln(n)}{\ln(\ln(n))}$.
- 5. On note, pour toute partie E de \mathbb{N}^* et pour tout $n \in \mathbb{N}^*$, E_n l'ensemble des éléments de E inférieurs ou égaux à n, c'est à dire que $E_n = E \cap [1, n]$, et l'on pose $d_n(E) = \frac{1}{n} \operatorname{Card}(E_n)$. Si la suite $(d_n(E))_{n \in \mathbb{N}^*}$ converge, on note d(E) sa limite et on dit que la partie E de \mathbb{N}^* admet une densité égale à d(E).
 - (a) Montrer que les ensembles suivants possèdent une densité dont on donnera la valeur.
 - i. Une partie finie F de \mathbb{N}^* .
 - ii. L'ensemble $a\mathbb{N}^* = \{ka/\ k \in \mathbb{N}^*\}$ des multiples non nuls de l'entier $a \in \mathbb{N}^*$.
 - iii. L'ensemble $C=\{k^2/\ k\in\mathbb{N}^*\}$ des entiers non nuls qui sont des carrés.
 - (b) Soient E_1, E_2 des parties **disjointes** de \mathbb{N}^* possédant une densité. Les parties $\mathbb{N}^* \setminus E_1$ et $E_1 \cup E_2$ possèdent-elles une densité ? Et si oui, que valent-elles ?
- 6. (a) Justifier, pour tout entier naturel m non nul, l'inégalité : $2\binom{2m+1}{m} \leq 2^{2m+1}$.
 - (b) Montrer que, pour tout entier naturel r non nul, l'entier $\prod_{\substack{r+1 divise l'entier <math>\binom{2r+1}{r}$

(le produit s'effectuant donc sur tous les entiers **premiers** de [r+2, 2r+1]).

(c) Etablir, pour tout entier n au moins égal à 2, l'inégalité $\prod_{\substack{p \leq n \\ n \in \mathcal{P}}} p \leq 4^n$ (le produit s'effectuant

donc sur tous les entiers **premiers** au plus égaux à n).

On raisonnera par récurrence forte et, ayant supposé l'inégalité vraie jusqu'au rang n, on examinera, en particulier, le cas où n+1 est un entier premier égal à 2r+1.

On en déduit ainsi l'inégalité
$$\sum\limits_{\substack{p\leq n\\p\in\mathcal{P}}}\ln(p)\leq n\ln(4).$$

7. Soit $n \in \mathbb{N}^*$. On note, pour tout nombre premier p et tout entier $r \in \mathbb{N}$, $r \geq 2$, $v_p(r)$ l'exposant de p dans la décomposition en nombres premiers de r, et on pose $v_p(1) = 0$.

MPI - DS2* - 2023-2024

Par exemple, puisque $300 = 2^2 \times 3 \times 5^2$, $v_2(300) = 2$, $v_3(300) = 1$, $v_5(300) = 2$ et $v_p(300) = 0$ pour $p \notin \{2, 3, 5\}$.

4

Soit p un nombre premier. On note, pour tout entier naturel k non nul, α_k (rep. β_k) le nombre d'entiers $d \in [1, n]$ tels que p^k divise d (resp. tel que $v_p(d) = k$).

Bien sûr, dès que k est assez grand, $\alpha_k = \beta_k = 0$.

- (a) Prouver, pour tout $k \in \mathbb{N}^*$, l'égalité $\alpha_k = \lfloor \frac{n}{n^k} \rfloor$.
- (b) Justifier l'égalité $v_p(n!) = \sum_{k=1}^{+\infty} k\beta_k$.
- (c) En déduire, en reliant β_k aux α_i , l'égalité $v_p(n!) = \sum_{k=1}^{+\infty} \lfloor \frac{n}{p^k} \rfloor$.
- (d) En déduire l'encadrement : $\frac{n}{p} 1 \le v_p(n!) \le \frac{n}{p-1} (= \frac{n}{p} + \frac{n}{p(p-1)})$.
- 8. Soient $(a_n)_{n\in\mathbb{N}^*}$ et $(\varepsilon_n)_{n\in\mathbb{N}^*}$ deux suites réelles. On note, pour tout $n\in\mathbb{N}^*$, $A_n=\sum\limits_{k=1}^n a_k$. Prouver, pour tout entier $n\geq 2$, l'égalité

$$\sum_{k=1}^{n} \varepsilon_k a_k = \sum_{k=1}^{n-1} (\varepsilon_k - \varepsilon_{k+1}) A_k + \varepsilon_n A_n$$

Partie II. Deux résultats asymptotiques

- 1. (a) Etablir, pour tout entier naturel n non nul, l'égalité : $\ln(n!) = \sum_{\substack{p \leq n \\ n \in \mathcal{D}}} v_p(n!) \ln(p)$.
 - (b) En déduire, pour tout entier naturel n non nul, l'encadrement :

$$\frac{\ln(n!)}{n} - K \le \sum_{\substack{p \le n \\ n \in \mathcal{D}}} \frac{\ln(p)}{p} \le \frac{\ln(n!)}{n} + \ln(4)$$

où le réel K est défini dans la question I.2).

- (c) Conclure que, quand l'entier n tend vers $+\infty$, $\sum_{\substack{p \leq n \\ p \in \mathcal{P}}} \frac{\ln(p)}{p} = \ln(n) + O(1)$.
- 2. On note χ l'application qui, à chaque entier $k \in \mathbb{N}^*$, associe 1 si k est premier (i.e. $k \in \mathcal{P}$) et 0 sinon.
 - (a) En posant, pour tout entier naturel k non nul, $a_k = \chi(k) \frac{\ln(k)}{k}$, $A_k = \sum_{i=1}^k a_i$, en utilisant **I**.8), établir, pour tout $n \geq 2$, l'égalité :

$$\sum_{\substack{p \le n \\ p \in \mathcal{P}}} \frac{1}{p} = \sum_{k=2}^{n-1} \frac{\ln(1+1/k)}{\ln(k)\ln(k+1)} A_k + \frac{A_n}{\ln(n)}$$

(b) Etablir, quand l'entier k tend vers $+\infty$, l'égalité :

$$\frac{\ln(1+1/k)}{\ln(k)\ln(k+1)}A_k = \frac{1}{k\ln(k)} + O(\frac{1}{k\ln^2(k)})$$

(c) En déduire, quand l'entier n tend vers $+\infty$, l'égalité :

$$\sum_{\substack{p \le n \\ p \in \mathcal{P}}} \frac{1}{p} = \ln(\ln(n)) + O(1)$$