SUITES ET SERIES DE FONCTIONS VECTORIELLES

E et F sont deux \mathbb{K} -espaces vectoriels de dimension finie. A est une partie non vide de E. Les fonctions étudiées dans ce chapitre sont définies sur A et à valeurs dans F. On suppose que E et F sont munis de normes $\|.\|_E$ et $\|.\|_F$.

1 Modes de convergence pour les suites de fonctions.

1.1 Convergence simple.

<u>Définitions</u>: soit (f_n) une suite de fonctions définies sur A à valeurs dans F.

- On dit que (f_n) converge simplement sur A si et seulement si pour tout $x \in A$, $(f_n(x))$ est une suite convergente dans F.
- Si (f_n) converge simplement sur A, on note $f: A \to F$, $x \mapsto \lim_{n \to +\infty} f_n(x)$. f est appelée la limite simple de (f_n) sur A (f est unique pour A donné). On dit aussi que (f_n) converge simplement vers f sur A.

Les normes d'un \mathbb{K} -espace vectoriel de dimension finie étant toutes équivalentes, la convergence d'une suite ne dépend pas de la norme choisie et donc la notion de convergence simple non plus.

1.2 Convergence uniforme.

<u>Définition</u>: soit (f_n) une suite de fonctions définies sur A à valeurs dans F. On dit que (f_n) converge uniformément sur A si et seulement s'il existe $f: A \to F$ telle que

$$\forall \varepsilon \in \mathbb{R}_+^*, \ \exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \ge n_0 \implies (\forall x \in A, \ \|f(x) - f_n(x)\|_F \le \varepsilon).$$

On note $\mathcal{B}(A,F)$ l'ensemble des fonctions bornées définies sur A à valeurs dans F. Pour tout $f \in \mathcal{B}(A,F)$, on note $\|f\|_{\infty} = \sup_{x \in A} \|f(x)\|_F$. $\|.\|_{\infty}$ est une norme sur le \mathbb{K} -espace vectoriel $\mathcal{B}(A,F)$. Deux normes équivalentes $\|.\|_F$ et $\|.\|_F$ sur F induisent deux normes $\|.\|_{\infty}$ et $\|.\|_{\infty}$ qui sont équivalentes.

On peut réécrire la définition de la convergence uniforme : soit (f_n) une suite de fonctions définies sur A à valeurs dans F. On dit que (f_n) converge uniformément sur A si et seulement s'il existe f: $A \to F$ telle que

$$\forall \varepsilon \in \mathbb{R}_+^*, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \implies (f_n - f \in \mathcal{B}(A, F) \text{ et } || f - f_n ||_{\infty} \leq \varepsilon)$$

ou encore plus simplement : soit (f_n) une suite de fonctions définies sur A à valeurs dans F. On dit que (f_n) converge uniformément sur A si et seulement s'il existe $f: A \to F$ telle qu'à partir d'un certain rang $n_0, f - f_n \in \mathcal{B}(A, F)$ et $(\|f - f_n\|_{\infty})_{n \geq n_0}$ converge vers 0.

Proposition 1

Soit (f_n) une suite de fonctions définies sur A à valeurs dans F.

Si (f_n) converge uniformément sur A, alors (f_n) converge simplement sur A, et donc le f de la définition est unique, c'est la limite simple de (f_n) sur A. On dit que (f_n) converge uniformément vers f sur A.

Proposition 2

Soit (f_n) une suite de fonctions définies sur A à valeurs dans F, bornées.

La suite (f_n) converge uniformément sur A si et seulement si elle converge dans $(\mathcal{B}(A,F),\|.\|_{\infty})$.

<u>Définitions</u> soit (f_n) une suite de fonctions définies sur A à valeurs dans F.

- On dit que (f_n) converge uniformément sur $B \subset A$ lorsque la suite $(f_n|_B)$ converge uniformément sur B.
- On dit que (f_n) converge uniformément au voisinage de $a \in A$ s'il existe un voisinage de a sur lequel elle converge uniformément.
- On dit que (f_n) converge uniformément au voisinage de tout point de A si elle converge uniformément au voisinage de a, pour tout $a \in A$.

Remarques

- 1. La convergence uniforme sur A implique la convergence uniforme au voisinage de tout point de A.
- 2. La convergence uniforme au voisinage de tout point de A implique la convergence simple sur A.

2 Permutation de limites.

2.1 Continuité

Proposition 3

Soit (f_n) une suite de fonctions définies sur A à valeurs dans F. Soit $f:A\to F$. Soit $a\in A$. On suppose :

- (i) la suite (f_n) converge uniformément vers f sur A
- (ii) chaque f_n est continue en a.

Alors f est continue en a.

Proposition 4

Soit (f_n) une suite de fonctions définies sur A à valeurs dans F. Soit $f: A \to F$. On suppose :

- (i) la suite (f_n) converge uniformément vers f sur A
- (ii) chaque f_n est continue sur A.

Alors f est continue sur A.

Théorème 1

Soit (f_n) une suite de fonctions définies sur A à valeurs dans F. Soit $f: A \to F$. On suppose :

- (i) la suite (f_n) converge uniformément vers f au voisinage de tout point de A
- (ii) chaque f_n est continue sur A.

Alors f est continue sur A.

2.2 Théorème de la double limite.

Théorème 2

Soit (f_n) une suite de fonctions définies sur A à valeurs dans F. Soit $f: A \to F$. Soit $a \in \overline{A}$. On suppose

- (i) (f_n) converge uniformément vers f sur A
- (ii) $\forall n \in \mathbb{N}, f_n \xrightarrow{a} l_n$

alors (l_n) admet une limite l dans F et $f \to l$ i.e.

$$\lim_{x \to a} \left(\lim_{n \to +\infty} f_n(x) \right) = \lim_{n \to +\infty} \left(\lim_{x \to a} f_n(x) \right).$$

Le résultat est encore valable si $A \subset \mathbb{R}$ n'est pas majoré et $a = +\infty$ ou si $A \subset \mathbb{R}$ n'est pas minoré et $a = -\infty$.

3 Intégration et dérivation

Dans cette section, $E = \mathbb{R}$ et A = I est un intervalle de \mathbb{R} , non vide et non réduit à un point.

3.1 Intégration sur un segment

Proposition 5

Soit (f_n) une suite de fonctions définies et continues sur I à valeurs dans F. Soit $f: I \to F$. Soit $a \in I$. On suppose que (f_n) converge uniformément sur tout segment de I vers f. On note, pour $n \in \mathbb{N}$, $G_n: x \mapsto \int_a^x f_n(t)dt$ et $G: x \mapsto \int_a^x f(t)dt$. Alors (G_n) converge uniformément vers G sur tout segment de I.

Théorème 3

Soit (f_n) une suite de fonctions définies et continues sur I = [a, b], avec a < b, à valeurs dans F. Soit $f: I \to F$. Si la suite (f_n) converge uniformément vers f sur [a, b], alors

$$\int_{a}^{b} f_{n} \underset{n \to +\infty}{\to} \int_{a}^{b} f.$$

3.2 Dérivation d'une limite de suites de fonctions.

Théorème 4

Soit (f_n) une suite de fonctions de classe \mathcal{C}^1 sur I intervalle de \mathbb{R} à valeurs dans F. On suppose que (f_n) converge simplement sur I vers f et que (f'_n) converge uniformément sur tout segment de I. Alors (f'_n) converge simplement sur I. On note g sa limite simple. (f_n) converge uniformément vers f sur tout segment de I, f est de classe \mathcal{C}^1 sur I et f' = g i.e. $(\lim_{n \to +\infty} f_n)'(x) = \lim_{n \to +\infty} f'_n(x)$.

Théorème 5 (Dérivation version C^k)

Soit $k \in \mathbb{N}^*$. Soit (f_n) une suite de fonctions de classe C^k sur I intervalle de \mathbb{R} à valeurs dans F. On suppose que pour tout $l \in [0, k-1]$, $(f_n^{(l)})$ converge simplement sur I et que $(f_n^{(k)})$ converge uniformément sur tout segment de I. On note f la limite simple de (f_n) sur I.

Alors pour tout $l \in [0, k-1]$, $(f_n^{(l)})$ converge uniformément sur tout segment de I, f est de classe C^k sur I et pour tout $l \in [1, k]$, pour tout x dans I, $f^{(l)}(x) = \lim_{n \to +\infty} f_n^{(l)}(x)$.

4 Séries de fonctions.

4.1 Modes de convergence.

<u>Définitions</u> soit $\sum f_n$ une série de fonctions définies sur A à valeurs dans F.

- On dit que $\sum f_n$ converge simplement sur A si et seulement si pour tout $x \in A$, $\sum f_n(x)$ est une série convergente dans F.
- Si $\sum f_n$ converge simplement sur A, on note $f: A \to F$, $x \mapsto \sum_{n=0}^{+\infty} f_n(x)$. f est appelée la <u>somme</u> de $\sum f_n$ sur A.
- On dit que $\sum f_n$ converge uniformément sur A lorsque la suite de ses sommes partielles converge uniformément sur A.

Proposition 6

Soit $\sum f_n$ une série de fonctions définies sur A à valeurs dans F. Si $\sum f_n$ converge uniformément sur A, alors $\sum f_n$ converge simplement sur A. <u>Définition</u>: soit $\sum f_n$ une série de fonctions définies sur A à valeurs dans F. On dit que $\sum f_n$ converge normalement sur A lorsque chaque f_n est bornée sur A et lorsque $\sum \|f_n\|_{\infty}$ converge.

Proposition 7

Soit $\sum f_n$ une série de fonctions définies sur A à valeurs dans F.

Si $\sum f_n$ converge normalement sur A, alors $\sum f_n$ converge uniformément sur A.

4.2Continuité.

Théorème 6

Soit $\sum f_n$ une série de fonctions continues sur $A \subset E$ à valeurs dans F.

On suppose que $\sum f_n$ converge uniformément au voisinage de tout point de A, alors $\sum f_n$ converge simplement sur A et sa somme est continue sur A.

4.3Intégration.

Théorème 7

Soit $\sum f_n$ une série de fonctions continues sur [a,b] un segment de \mathbb{R} à valeurs dans F.

On suppose que $\sum f_n$ converge uniformément sur [a,b].

Alors $\sum f_n$ converge simplement sur [a,b] et sa somme S est continue sur [a,b]. On a de plus

$$\sum_{a=0}^{b} \int_{a}^{b} f_n \text{ converge et } \sum_{n=0}^{+\infty} \int_{a}^{b} f_n = \int_{a}^{b} S \text{ i.e. } \sum_{n=0}^{+\infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} \sum_{n=0}^{+\infty} f_n(x) dx.$$

4.4 Dérivation.

Théorème 8

Soit $\sum f_n$ une série de fonctions de classe \mathcal{C}^1 sur I intervalle de \mathbb{R} à valeurs dans F. On suppose que $\sum f_n$ converge simplement sur I et que $\sum f'_n$ converge uniformément sur tout segment de I.

Alors $\sum f'_n$ converge simplement sur I, on note T sa somme ; si on note S la somme de la série de fonctions $\sum f_n$, $\sum f_n$ converge uniformément sur tout segment de I, S est de classe \mathcal{C}^1 sur I et pour

tout
$$x$$
 dans $I, S'(x) = T(x)$ i.e. $\left(\sum_{n=0}^{+\infty} f_n\right)'(x) = \sum_{n=0}^{+\infty} f'_n(x)$.

Théorème 9 (Version C^k)

Soit $k \in \mathbb{N}^*$. Soit $\sum f_n$ une série de fonctions de classe C^k sur I intervalle de \mathbb{R} à valeurs dans F. On suppose que pour tout $l \in [0, k-1]$, $\sum f_n^{(l)}$ converge simplement sur I et que $\sum f_n^{(k)}$ converge uniformément sur tout segment de I. On note S la somme de $\sum f_n$.

Alors pour tout $l \in [0, k-1]$, $\sum f_n^{(l)}$ converge uniformément sur tout segment de I, S est de classe \mathcal{C}^k sur I et pour tout $l \in [1, k]$, pour tout x dans I, $S^{(l)}(x) = \sum_{n=0}^{+\infty} f_n^{(l)}(x)$.

4.5 Interversion limite-somme.

Théorème 10

Soit $\sum f_n$ une série de fonctions définies sur $A \subset E$ à valeurs dans F. Soit a un point adhérent à A. On suppose que $\sum f_n$ converge uniformément sur A et que pour tout $n \in \mathbb{N}$, $f_n \underset{a}{\rightarrow} l_n$ $(l_n \in F)$.

Alors $\sum f_n$ converge simplement sur I, on note S sa somme; $\sum l_n$ converge et si on note l sa somme,

$$S \to l \text{ i.e. } \lim_{x \to a} \sum_{n=0}^{+\infty} f_n(x) = \sum_{n=0}^{+\infty} \lim_{x \to a} f_n(x)$$

 $S_{\stackrel{\rightarrow}{a}}l$ i.e. $\lim_{x\to a}\sum_{n=0}^{+\infty}f_n(x)=\sum_{n=0}^{+\infty}\lim_{x\to a}f_n(x)$. Le résultat est encore valable si $A\subset\mathbb{R}$ n'est pas majoré et $a=+\infty$ ou si $A\subset\mathbb{R}$ n'est pas minoré et $a=-\infty$.