Programme de colles

MPI

du 5 au 9 février 2024.

1 Probabilités : révisions de sup.

1.1 Généralités.

Espaces probabilisés finis ; probabilités conditionnelles : formule des probabilités composées, formule des probabilités totales, formule de Bayes ; événements indépendants.

1.2 Variables aléatoires sur un univers fini.

Lois usuelles : uniforme, Bernoulli et binomiale ; espérance, variance, inégalités de Markov et de Tchebychev ; couples de variables aléatoires, loi du couple, lois marginales, indépendance, covariance.

2 Probabilités.

2.1 Espaces probabilisés.

Tribus, univers, événements, espace probabilisable, événements incompatibles, système complet d'événements. Probabilités, espace probabilisé, événement négligeable, presque sûr. Continuité croissante, continuité décroissante, sous-additivité.

2.2 Probabilités conditionnelles et indépendance.

Définitions, formule des probabilités composées, formule des probabilités totales, formule de Bayes. Indépendance : deux à deux, mutuelle, passage à l'événement contraire.

2.3 Distribution de probabilités discrètes.

Soit $(p_{\omega})_{\omega \in \Omega}$ est une distribution de probabilités discrètes sur Ω . Il existe une unique probabilité \mathbb{P} sur $(\Omega, \mathcal{P}(\Omega))$ telle que pour tout $\omega \in \Omega$, $p_{\omega} = \mathbb{P}(\{\omega\})$ et pour tout événement A, $\mathbb{P}(A) = \sum_{\omega \in A} p_{\omega}$.

Réciproquement, si Ω est au plus dénombrable et si \mathbb{P} est une probabilité sur $(\Omega, \mathcal{P}(\Omega))$, on pose, pour tout $\omega \in \Omega$, $p_{\omega} = \mathbb{P}(\{\omega\})$, alors $(p_{\omega})_{\omega \in \Omega}$ est une famille sommable de somme 1, i.e. une distribution de probabilités discrètes sur Ω .

3 Exercices de la banque CCINP.

95 - 98 - 99 - 101 - 104 - 105 - 107 - 109 - 112

Prochaine semaine : variables aléatoires.